p-i-n-ФОТОДИОДЫ

         

Чувствительность


Чувствительность фотоприемника — это полный КПД преоб­разования световой мощности в электрический ток:

где ф0 — поток световой энергии, т. е. произведение числа фото­нов (в единицу времени) на энергию одного фотона. С учетом формулы можно переписать выражение для чувствитель­ности фотоприемника в виде

Отсюда следует, что чувствительность фотоприемника тем выше, чем больше квантовый выход г\, т. е. чем больше доля светового   потока, поглощаемая   в  активной   зоне   (рис.   13.3).

Если учесть противоречивые требования, предъявляемые к ши­рине активной зоны, то ее оптимальное с точки зрения полосы пропускания значение будет таким:

Такая ширина активной зоны обеспечивает квантовый выход ~60% и чувствительность на длине волны 1 мкм, равную 5 = 0,5 А/Вт.



P-i-n-ФОТОДИОДЫ


    p-i-n-ФОТОДИОДЫ

В фотодиоде необходимо совместить область поглощения света с обедненным слоем, чтобы одновременно удовлетворить требованиям быстродействия и высокого квантового выхода. Это реализуется в фотодиодах с p-i-n-структурой, которые явля­ются наиболее распространенным типом фотодетекторов.

Структура и принцип действия p-i-n-фотодиода пояснены на рис. 11.15. Он состоит из низкоомной п+-подложки, слабо леги­рованного (собственного) i-слоя и тонкого низкоомного p+-слоя толщиной до 0,3 мкм, через которые производится освещение. Низкоомные n+- и р+-области выполняют роль контактов (а). Наличие центрального высокоомного i-слоя приводит к увеличе­нию ширины слоя объемного заряда (б) по сравнению с обычным p-n-переходом. Его толщина di, подбирается так, чтобы поглоще­ние света происходило в этом i-слое (в), совпадающем со слоем объемного заряда. При приложении обратного смещения U обед­ненный слой распространяется на всю i-область. Это приводит к уменьшению емкости перехода, повышению чувствительности и быстродействия. Падающий свет, затухая по экспоненциаль­ному закону с постоянной, определяемой показателем поглоще­ния кш для данной длины волны, вызывает генерацию носителей заряда преимущественно в i-слое. Фотогенерированные носители ускоряются электрическим полем до скорости насыщения дрейфа (~ 105 м/с), поскольку напряженность электрического поля в обе­дненном слое обычно превышает 1 кВ/см. Эта скорость дрейфа примерно на три порядка превышает скорость диффузии. Поэто­му p-i-n фотодиод конструктивно выполняется так, чтобы мак-

симально уменьшить долю поглощенного света вне i-слоя. С этой целью переход формируется у самой повер­хности кристалла (как это реализуется в кремниевых фотодиодах), или использу­ется эффект широкозонного окна (как в p-i-п-гетерофотодиодах).

В стационарном режиме плотность полного фотото­ка, протекающего через обратносмещенный p-i-n-переход, можно разбить на две части:

где Jдр — плотность дрейфо­вого тока, обусловленного генерацией носителей в i-слое толщиной d, а Jдифф — плотность диффу­зионного тока, обусловлен­ного генерацией носителей в объеме полупроводника за пределами обедненного слоя и их последующей диффузи­ей к области     объемного за­ряда. Будем считать толщи­ну приповерхностного слоя p+-типа  существенно меньше




1/ kw Током термической генерации можно пренебречь. Тогда в соответствии  с  рис. 11.15, в скорость генерации электронно-дырочных  naр:



где Go определяется потоком падающих фотонов Фw=Iw/hw, коэффициентом оптического отражения Rw и площадью окна А как:



При этих условиях дрейфовый ток:



Плотность диффузионного тока Jдифф определяется через кон­центрацию неосновных носителей (в нашем случае — дырки в n-области) и их коэффициент диффузии Dp как



В свою очередь концентрация неосновных носителей (дырок) находится из одномерного диффузионного уравнения, которое в нашем случае имеет вид:



Здесь tр — время жизни неравновесных носителей, а рn0 — равно­весная концентрация дырок. Решая это уравнение с граничными условиями pn=pn0 при z®¥ и pn=0 при z=d, подставляя это решение в  находим



где Lp=(Dptp )1/2— диффузионная длина.

Полная плотность фототока получается как



Обычно второе слагаемое, содержащее pn, значительно меньше первого и полный фототок Jф пропорционален потоку фотонов Фw. Получаем выражение для квантовой эффективности



Для достижения высокой эффективности фотодиода необхо­димо выполнить kwd>>1. Однако при увеличении d будет расти время пролета носителей, которое равно времени их дрейфа через

i-область. Это приведет к уменьшению быстродействия диода. При высокочастотной модуляции интенсивности света появится разность фаз между потоком фотонов и фототоком. Разумный компромисс между быстродействием и квантовой эффективно­стью достигается при значении ширины области поглощения dt от 1/кw до 2/кw. В кремниевых p-i-n фотодиодах, предназначен­ных для приема излучения арсенид-галлиевого лазера (l= 0,85...0,92 мкм), это соответствует толщине обедненного слоя d=20...50 мкм. Те же диоды, предназначенные для приема излу­чения твердотельных неодимовых лазеров (l=1,06 мхм), должны иметь толщину i-слоя d= 500 мкм.

Предельная рабочая частота, ограниченная временем дрейфа носителей через i-область и соответствующая уменьшению фото­тока на 3 дБ по сравнению со стационарным значением, пример­но равна:





где vs — скорость насыщенного дрейфа.

Наибольшее распространение в оптической электронике полу­чили p-i- n фотодиоды, изготовленные на основе высокоомного кремния n-типа. Типичная конструкция кремниевого p-i-n-фотoдиода приведена на рис. 11.16, а. Отметим, что эти диоды просты по своей структуре, обладают хорошей линейностью в широком динамическом диапазоне от десятков пиковатт до десятков мил­ливатт. Они просты в эксплуатации и дешевы. Их спектр фоточу­вствительности хорошо согласуется со спектром излучения GaAs-лазеров. Все это, вместе взятое, определило широкое ис­пользование p-i-n-фотодиодов в оптической электронике для де­тектирования оптических сигналов, модулированных частотами до гигагерцового диапазона.

Естественно, что для реализации возможностей фотодиода как фотоприемника слабых оптических сигналов его электричес­кие параметры должны быть согласованы с параметрами схемы, обеспечивающей дальнейшее усиление и регистрацию сигнала. Освещаемый фотодиод эквивалентен генератору тока. В простей­шей схеме включения, изображенной на рис. 11.16, б, с нагрузоч­ного сопротивления Rн снимается напряжение, пропорциональ­ное фототоку, которое подается на усилитель напряжения. От­ношение сигнала к шумовому току на входе будет тем больше, чем больше сопротивление Rн. В сочетании с полевым транзистором такая схема позволяет регистрировать световые мощ­ности на уровне десягков пиковатт. Напомним, что при больших Rн, инерционность приемного тракта может быть ограничена постоянной времени RC.

Вместо обычного усилителя напряжения может быть выбран стандартный операционный усилитель с большим коэффициен-






 Поглощение излучения


 

Поглощение  света   в  веществе  описывается  экспоненциаль­ным законом :

Параметр а называется показателем поглощения вещества. Об­ратная  ему  величина  имеет  размерность длины  и  равна  тол


щине вещества, при которой световой поток ослабляется в е раз, где е — основание натуральных логарифмов. Это соответствует поглощению около 63% излучения, падающего на вещество. По­казатель поглощения а очень сильно зависит от длины волны l, т. е. от энергии падающих фотонов и, значит, от их способ­ности переводить электроны в валентную зону. Из приведен­ных на рис. 13.2 зависимостей показателя поглощения от длины волны следует, что свет создает заметный фототок только в определенной спектральной области, резко ограниченной с од­ной стороны критической длиной волны lс, которая соответ­ствует минимальной энергии кванта, необходимой для преодо­ления запрещенной зоны AW вещества. Критическая длина вол­ны дается формулой

где h — постоянная Планка. Если энергию выразить в электрон-вольтах, а длину волны в

микрометрах, то эта формула прини­мает вид

Величины AW и lс для ряда используемых на практике по­лупроводниковых материалов приведены в табл. 13.1, которая служит дополнением к табл. 12.1.

Другая граница фоточувствительности, со стороны коротких длин волн, обусловлена очень сильным поглощением излучения вблизи поверхности образца полупроводника, где очень мало время жизни носителей тока до их рекомбинации.



Принципиальное устройство ГФТ


Принципиальное устройство ГФТ показано на рис. 1( его зонная диаграмма эмиттер — база — на рис. 55. Заштрихованной показана так называемая легированная плоскость, которая пред­ставляет собой тонкий (~0,1 мкм) сильно легированный акцепто­рами (Nа~1О11 см-2) слой, вводимый при резком гетеропереходе для снижения рекомбинационных потерь на границе раздела ба­за — эмиттер. Широкозонный гетероэмиттер является прозрачным окном для излучения, поглощаемого в относительно узкозонной базе. Наличие пичкового потенциального барьера Dxc для неос­ковных носителей базы на границе гетероперехода позволяет не­зависимо выбирать уровни легирования эмиттера Na и базы Ns так, чтобы N3<<N6, разделить области поглощения    и    переноса.

При этом удается достигнуть практически максимальной доб­ротности фотоприемника (— 100 ГГц) при G>100. Гетерофототранзистор — двухполюсный при­бор, который не имеет подклю­ченной базы.

Как высокодобротный фотоприемник ГФТ является альтерна­тивой лавинным фотодиодам, отличающейся большей технологич­ностью и менее жесткими допусками на разброс его параметров, в том числе напряжения смещения. По Ропор ГФТ существенно (на порядки величин) уступает лавинным фотодиодам. Однако для ин­тегрально-оптических схем этот параметр в ряде случаев не яв­ляется критичным.

Схема включения ГФТ соответствует схеме с общим эмитте­ром, для которой

где vб , v3 — средние скорости электронов около эмиттерного края базы и дырок около базового края эмиттера соответственно; 5vб/vз<50; Dxv= q(Up—Un)=DEg—DxC— скачок потенциала валентной зоны на границе гетероперехода; Dxс — скачок потен­циала для зоны проводимости на границе гетероперехода; DEg = = ЕЭ—Еб — разница ширины запрещенных зон эмиттера и базы (рис. 55). Из выражения  следует, что для получения больших G при Nэ/Nб<<1 и Vб/Vэ<50 необходимо выбирать гетеропары, у которых Dxc/Dxc велико и Dxv>>kT. Для AlxGa1-x As/GaAs при x = 0,28 Dxс=0,3 эВ, а Dxv = 0,053 эВ  (~2 kT при T=300° С).


При комнатной температуре такой гетеропереход дает сравни­тельно небольшой выигрыш в G, что вынуждает повышать уровень легирования эмиттера вплоть до NЭ=1017 см-3. Эффективность ге­тероперехода значительно возрастает, если он плавный. Плавный гетеропереход получают, задавая x=var у перехода. При этом G возрастает примерно в exp (Dxc / kT) раз, что позволяет получать коэффициенты усиления фототока 300—600 при задержке >50 пс.

У гетеропары Gax In1-x_P/GaAs при x=0 величина ступеньки Dxv= 0,29 эВ (~11 kT), а   Dxс=0,16 эВ, что позволяет практиче­ски нелегировать эмиттер. Могут быть также использованы струк­туры InGaAsP/InP, в которых в качестве широкозонного эмиттера используется фосфид индия. У двух последних пар в гетерофототранзисторах наблюдается значительный темновой ток, что прак­тически исключает их применение в качестве низкопороговых ско­ростных  фотоприемников.  Высокий  уровень    легирования    базы (Nб = IO18—1019 см~3)' позволяет получать объемное время жизни неосновных носителей t0>1 пс. При этом поле в базе Еб = Dxв /qWб=  104 В/см, что превышает пороговые значения для GaAs и InP. При таких полях перенос носителей происходит поч­ти баллистическим путем при Vб= (1,5—2,5) • 107 см/с. При низких уровнях легирования эмиттера снижается его емкость СЭ=N1/2Э, что адекватно снижению уровня шумов приемника. Чтобы при этом не возрастало последовательное сопротивление эмиттера, его толщину уменьшают до нескольких десятых долей микрометра.

Гетерофототранзистор — весьма сложная многослойная струк­тура. Однако она типичная для большинства скоростных высоко­чувствительных приемников с вертикальной топологией.

В любой из приведенных на рис. 54 структур коэффициент усиления фототока в соответствии с (63) определяется соотноше­нием



— первичный фототок, обусловленный поглощением    в    активной области прибора доли излучения P0 ,



Здесь hв — квантовый выход внутреннего фотоэффекта; W — тол­щина активной области; а=1/а — длина поглощения. По опреде­лению первичный фототок (65) равен току фотодиода, у которого коэффициент собирания равен hв. Полоса пропускания фотоприем­ника, ограниченная его инерционностью по выходной электриче­ской цепи, Df=l/2ptp, где tp — время релаксации, зависящее от объемного t0, поверхностного времени жизни носителей фототока, площади фотоприемника, его конструкции. Для линейной кинети­ки фототока, когда tн=tс=tЭф=tp, tp = 0,35/Df, где tp = t3 определя­ется как время нарастания (или спада) импульса фототока в пре­делах от 0,1 до 0,9 его установившегося значения.



В структуре прибора всегда есть размер в направлении движе­ния носителей, который ограничивает его быстродействие време­нем пролета:



где Vд max<(1—3)Vt=107—108 см/с. Из (66) следует, что для по­лучения малых tnp необходимо сокращать критические длины, увеличивать поля в активной области прибора и выбирать мате­риалы с большой подвижностью носителей. При этом инжектиро­ванные излучением носители должны иметь большую подвиж­ность.

В общем случае tпр определяется как дрейфом, так и диффузи­ей носителя. Последняя составляющая появляется тогда, когда излучение поглощается также вне активной области сильного поля. В диодных структурах это означает генерацию электронно-дырочных пар вне области пространственного заряда (ОПЗ). При этом [58] tпр=[WOПЗ +2(Lп + Lр)]/Vднас где Ln , Lp — диффузионные длины неосновных носителей в нейтральных р- и n-областях при­бора соответственно; VДНАС — средняя дрейфовая скорость насыще­ния, определяемая скоростями носителей обоих знаков. Для боль­шинства материалов, применяемых в быстродействующих фото­приемниках,  VДНАС = VРНАС =VДНАС.

В выражении tP=tnp + tCX составляющая   схемной   релаксации tCX= (Rн+Rg)Cg ; Cg, Rg — полные емкость и последовательное со­противление приемника; Rн — сопротивление нагрузки.  При мик­роминиатюризации фотоприемников, что характерно для фотопри­емников интегрально-оптических   схем,   время    tcx   уменьшается. Конструкция  фотоприемника должна быть такой, чтобы выполня­лось неравенство tСX<tnp. Такой оптимизированной диодной струк­турой является р—i—n-диод, в котором область    сильного    поля расширена за счет i-области. В режим истощения при напряжени­ях  смещения   UCM>W2i /2ee0m0r,  Wi=Wt.  Если  при  этом   Won3=1/а, то при фронтальном возбуждении практически все излучение будет поглощаться в области сильного поля диода. Таким об­разом, при h= 0,8—0,9 размеры i-области оказываются тем мень­ше, чем больше коэффициент поглощения излучения а в данном материале. В соответствии с этим для p=Si с р=104 Ом-см в ди­апазоне  l=0,8—0,9 мкм  толщины   Wi = 20—50  мкм  при   Won3 = = 10—20 мкм и Uсм = Uис = 5 В. При этом tр <150 нc и уменьшается с ростом напряжения смещения до единиц наносекунд при UCM =  100 В.



Диапазону длин волн 0,9—1, 6 мкм соответствуют материалы AiiiBv, в частности n-- lnP, -InGaAs, -InGaAsP, для которых условие Wi=1/a при R выполняется уже при толщинах 3— 10 мкм. У этих материалов наблюдаются и самые высокие по­движности носителей, достигающие при комнатных температурах 104 см3/В с. (mn =12600 см2/В с, n- Ino,53Gao,47As, lо=1,3мкм). Для приемников излучения на l<0,9 мкм, в частности на l=0,82 мкм, широко используется GaAs, AlGaAs, для которых хо­рошо отработаны технологии получения практически всех типов скоростных фотоприемников. Ниже приведены некоторые значения параметров арсенида галлия, достаточные для расчета характе­ристик фотоприемников на его основе [58].



   Плоскостной фотодиод

Эти фотодиоды, в которых поглощение происходит в основ­ном вне обедненного слоя и, следовательно, постоянная вре­мени определяется диффузией носителей. Если предположить, что толщина обедненного слоя мала и большая часть актов об­разования пар носителей заряда происходит вне этого слоя, то можно провести такой же расчет, как и в предыдущем параг­рафе. Но теперь временная задержка будет определяться диф­фузией [формула (13.5)] и мы получим следующее выражение для полосы пропускания:



где по-прежнему е=1/а(l). В случае промежуточных струк­тур, в которых имеются градиенты концентраций, или при пло­хом согласовании фотоприемника с рабочей длиной волны по­лоса пропускания будет лежать в пределах



В тех случаях, когда рабочая длина волны и круговая ча­стота модуляции известны заранее, следует одновременно опти-



мизировать и чувствительность и полосу пропускания. На рис. 13.7 приведена зависимость граничной частоты фотодиода от требуемой спектральной области.


 Шумы фотодиодов


А. Шумы в отсутствие лавинного усиления

В данном случае фототок пропорционален вызывающей его световой мощности. Такое соотношение выполняется в среднем, поскольку, как показывает более детальный анализ, фототок есть случайная величина, которая, как и всякая другая случай­ная величина, характеризуется различными моментами распре­деления вероятностей: средним значением, среднеквадратич­ным и т. д. Это и понятно, так как ток на выходе фотодиода равен сумме отдельных токов, соответствующих движению но­сителей заряда, возникающих в разные моменты времени.

Этот шум, который будет добавляться к шумам цепей уси­ления и обработки информации, искажает сигнал и так же, как потери в оптических волокнах, ограничивает дальность опти­ческой связи.

Обозначим через p(t) мощность светового импульса, падаю­щего на фотодиод, через {tn}--последовательность моментов времени, в которые рождается пара электрон — дырка, а через u(t) — импульс напряжения на нагрузочном резисторе фото­диода, создаваемый парой носителей в момент t = 0). Полное напряжение на нагрузочном резисторе будет равно

где N — полное число пар носителей заряда, генерируемых све­товым импульсом. Как показано, процесс генерации носителей, с которым связаны случайные перемен­ные {tn} и N, описывается распределением Пуассона с парамет­ром l(t), зависящим от времени. Таким образом, вероятность того, что в промежутке времени (t, t+ T) возникнет п пар но­сителей заряда, равна

В таком случае среднее напряжение на выходе равно:

Добавленное здесь слагаемое s2t учитывает шумы, главным образом тепловые, которые вносят электронные схемы, вклю­ченные на выходе фотодиода.

Положив p(t) = const = р0, можно написать выражение для отношения сигнала к шуму:

Допустим также, что u(t)—импульсный отклик идеального фильтра низких частот с полосой пропускания Df; тогда окон­чательно получим

Следовательно, существует такое значение световой мощ­ности р0, при котором шум равен сигналу, т. е. S/B = 1 (или О дБ). Такая мощность называется эквивалентной мощностью шума. Чем меньше эквивалентная мощность шума, тем меньше оптическая мощность на входе приемника, необходимая для обеспечения заданного отношения сигнала к шуму. Обычно теп­ловой шум пропорционален полосе пропускания Df, и поэтому эквивалентная мощность шума измеряется в единицах Вт*Гц-1/2 .


Б. Шумы при наличии лавинного усиления

Полученные выражения показывают ту важную роль, кото­рую играют собственные шумы фотодиода в уменьшении пол­ного отношения сигнала к шуму. Для уменьшения этого влия­ния можно использовать лавинный фотодиод с внутренним коэф­фициентом усиления М. Коэффициент усиления — случайная ве­личина, распределение вероятности которой зависит от типа но­сителя заряда, вызывающего ионизацию. Обозначим через Мn значение  коэффициента  усиления  в  момент  времени  tn когда рождается   первая   пара   электрон — дырка. Полное напряжение на нагрузочном резисторе будет равно



Не вдаваясь в детали довольно сложного расчета, напишем сразу формулу для среднего квадрата:



где M — среднее значение величины Мn , a F(M)— коэффициент шума, характеризующий отклонения от постоянного коэффи­циента усиления, равного М. При данных условиях выражение (13.25) принимает вид



Аналогичным образом можно определить эквивалентную мощность шума для системы фотодиод — нагрузка. Отметим, что она зависит от коэффициента усиления М. Если предполо­жить, что F(M) = MX то легко показать, что существует оптимальное значение M, при котором эквивалент­ная мощность шума минимальна.

    p-i-n-ФОТОДИОДЫ

В фотодиоде необходимо совместить область поглощения света с обедненным слоем, чтобы одновременно удовлетворить требованиям быстродействия и высокого квантового выхода. Это реализуется в фотодиодах с p-i-n-структурой, которые явля­ются наиболее распространенным типом фотодетекторов.

Структура и принцип действия p-i-n-фотодиода пояснены на рис. 11.15. Он состоит из низкоомной п+-подложки, слабо леги­рованного (собственного) i-слоя и тонкого низкоомного p+-слоя толщиной до 0,3 мкм, через которые производится освещение. Низкоомные n+- и р+-области выполняют роль контактов (а). Наличие центрального высокоомного i-слоя приводит к увеличе­нию ширины слоя объемного заряда (б) по сравнению с обычным p-n-переходом. Его толщина di, подбирается так, чтобы поглоще­ние света происходило в этом i-слое (в), совпадающем со слоем объемного заряда. При приложении обратного смещения U обед­ненный слой распространяется на всю i-область. Это приводит к уменьшению емкости перехода, повышению чувствительности и быстродействия. Падающий свет, затухая по экспоненциаль­ному закону с постоянной, определяемой показателем поглоще­ния кш для данной длины волны, вызывает генерацию носителей заряда преимущественно в i-слое. Фотогенерированные носители ускоряются электрическим полем до скорости насыщения дрейфа (~ 105 м/с), поскольку напряженность электрического поля в обе­дненном слое обычно превышает 1 кВ/см. Эта скорость дрейфа примерно на три порядка превышает скорость диффузии. Поэто­му p-i-n фотодиод конструктивно выполняется так, чтобы мак-




симально уменьшить долю поглощенного света вне i-слоя. С этой целью переход формируется у самой повер­хности кристалла (как это реализуется в кремниевых фотодиодах), или использу­ется эффект широкозонного окна (как в p-i-п-гетерофотодиодах).

В стационарном режиме плотность полного фотото­ка, протекающего через обратносмещенный p-i-n-переход, можно разбить на две части:



где Jдр — плотность дрейфо­вого тока, обусловленного генерацией носителей в i-слое толщиной d, а Jдифф — плотность диффу­зионного тока, обусловлен­ного генерацией носителей в объеме полупроводника за пределами обедненного слоя и их последующей диффузи­ей к области     объемного за­ряда. Будем считать толщи­ну приповерхностного слоя p+-типа  существенно меньше

1/kw Током термической генерации можно пренебречь. Тогда в соответствии  с  рис. 11.15, в скорость генерации электронно-дырочных  naр:



где Go определяется потоком падающих фотонов Фw=Iw/hw, коэффициентом оптического отражения Rw и площадью окна А как:



При этих условиях дрейфовый ток:



Плотность диффузионного тока Jдифф определяется через кон­центрацию неосновных носителей (в нашем случае — дырки в n-области) и их коэффициент диффузии Dp как



В свою очередь концентрация неосновных носителей (дырок) находится из одномерного диффузионного уравнения, которое в нашем случае имеет вид:



Здесь tр — время жизни неравновесных носителей, а рn0 — равно­весная концентрация дырок. Решая это уравнение с граничными условиями pn=pn0 при z®¥ и pn=0 при z=d, подставляя это решение в  находим



где Lp=(Dptp )1/2— диффузионная длина.

Полная плотность фототока получается как



Как правило, здесь можно пренебречь вторым слагаемым, содержащим пр0, и тогда плотность полного тока оказывается пропорциональной падающему световому потоку. Она макси­мальна при двух условиях ае >> 1 и aLn> 1, которые противо­речат требованию малой постоянной времени, так как увели­чение е влечет за собой увеличение времени перехода. Для оценки влияния времени перехода на постоянную времени мож­но измерить фазовый сдвиг между фототоком и световым пото­ком, модулируемым высокой частотой. Для простоты предполо­жим, что внешнее напряжение достаточно велико и поэтому в слое с собственной проводимостью нет свободных носителей заряда, а те носители, которые проходят через него, движутся с предельной скоростью при данном электрическом поле, т. е. v =vs. Обозначив круговую частоту модуляции через wbwl, можно представить световой поток в виде f= fi ехр{iwt}. Вклад, вно­симый слоем толщиной dx по оси х, будет равен





если положить а = 0. Следовательно,



где tr = e/vs — время, за которое носитель проходит через обед­ненный слой. Итак, ток проводимости амплитудно модулирован функцией вида [1—ехр(iwtr)]/iwtr график которой представ­лен на рис. 13.5. Если пренебречь влиянием тока смещения, ко­торый обусловлен внешним напряжением и не зависит от вре­мени, то нетрудно видеть, что при wtr = 2,4 эта функция умень

-

шается на 3 дБ. Следовательно, полоса пропускания на уровне 3 дБ будет равна



Отсюда следует, что хороший компромисс между требова­ниями быстродействия и чувствительности достигается при е= 1/а.

 Влияние диффузии

Предположим, что толщина слоя объемного заряда мала по сравнению с длиной поглощения L = 1/а(l). Тогда большая часть пар электрон — дырка будут перемещаться под действием диффузии и только те из них, которые достигнут обедненной зоны, дадут вклад в фототок. Следовательно, полезными будут те пары носителей заряда, которые генерируются на расстоя­нии, меньшем диффузионной длины, от обедненной зоны. Можно ввести понятие скорости диффузии носителей [202], которая пропорциональна логарифмической производной от локальной концентрации носителей заряда С(х):



Здесь D — коэффициент диффузии, который зависит от типа рас­сматриваемых носителей заряда . Если концентра­ция носителей распределяется по экспоненциальному закону, то скорость диффузии Vдифф — постоянная величина, равная про­изведению Da. Если предположить, что полезная толщина полу­проводника е равна длине поглощения, то легко найти время, за которое носители ее проходят:



Влияние диффузии меньше, если р — n-переход расположен близко от поверхности и если велика толщина слоя объемного заряда.

Гетерофототранзисторы.

Весьма перспективными для интегрально-оптических и оптоэлектронных схем оказываются биполярные фототранзисторы с широкозонным гетероэмиттером — гетерофототранзисторы   (ГФТ), реализация которых стала возможной благодаря успехам эпитаксиальной технологии. 

                                                                       


Улучшение характеристик фотодиодов.


Уменьшив степень легирования слоя N-типа, можно увели­чить ширину слоя объемного заряда при том же рабочем на­пряжении. В пределе мы получаем беспримесный материал с собственной проводимостью (обозначаемый буквой /), к кото­рому добавляется слой материала N-типа с малым удельным сопротивлением для обеспечения омического контакта. Такова структура PIN, обеспечивающая квантовый выход, близкий к единице, и очень высокую чувствительность.

Можно также повысить напряжение на фотодиоде до уровня, при котором возможно лавинное усиление. Тогда ширина обедненного слоя будет определяться внешним напряжением и удельным сопротивлением материала (при постоянном напря­жении величина е пропорциональна корню квадратному из удельного сопротивления материала). Кроме того, чем больше ширина обедненного слоя, тем меньше емкость р — n перехода и тем меньше постоянная времени фотодиода.

 Основные характеристики фотодиодов  2.