О СВОЙСТВАХ ТРАНЗИСТОРОВ
Современные электронные усилительные устройства работают на транзисторах и интегральных микросхемах. Аналоговая микросхема представляет собой миниатюрный усилительный каскад или даже усилитель, изготовленный на кристалле размером в несколько квадратных миллиметров. В состав интегральной микросхемы входят десятки и сотни транзисторов, резисторы и конденсаторы. Набор интегральных микросхем весьма обширен, включает в себя усилители звуковой, высокой и промежуточной частот для радиоприемников и телевизоров, различные каскады преобразователей частоты, специальные усилители (дифференциальные и операционные и пр.). Степень интеграции все возрастает, т. е. в одной микросхеме может умещаться все больше каскадов радиоприемника или даже телевизора. Но пока основой распространенных радиолюбительских конструкций остаются транзисторы, часто в сочетании с интегральными микросхемами.
Если для нормальной работы микросхемы необходимо лишь обеспечить ей определенные напряжения питания (мы не говорим сейчас о подключении внешних дополнительных элементов и о подборе параметров внешних корректирующих цепей), то транзистор нуждается в правильном выборе режима работы. От этого зависят многие параметры устройства и возникающие при этом искажения усиливаемых сигналов. Особенно это относится к работе мощных транзисторов.
В настоящее время в электронной аппаратуре применяются обычные транзисторы (биполярные) и полевые (униполярные). Биполярные имеют два р-n перехода. Они могут включаться по схеме с общей базой (ОБ), с общим эмиттером (ОЭ) или общим коллектором (ОК) (рис. 1).
Рис. 1. Принципиальные схемы включения транзисторов:
в — с общей базой; б — с общим эмиттером; в — с общим коллектором (эмиттерный повторитель)
В схеме включения ОБ (рис. 1,а) входным электродом является эмиттер, а выходным — коллектор. Входное сопротивление транзистора невелико (десятки ом), так как эмиттерный р-n переход включен в прямом направлении, выходное — большое, поскольку коллекторный переход смещен в обратном направлении.
Такое сочетание входного и выходного сопротивлений неудобно для создания многокаскадных усилителей: трудно согласовать большое выходное сопротивление предыдущего с малым входным сопротивлением последующего каскада.
Рис. 2. Структурная схема транзистора р-n-р типа
Из рис. 2 видно, что входным является ток эмиттера IЭ. Часть его ответвляется в базу, образуя ток базы IБ, а другая — ток коллектора Iк. Таким образом, полезный управляемый ток коллектора, протекающий через нагрузку, составляет только часть входного тока эмиттера: Iк=Iэ — IБ, т. е. коэффициент передачи тока h21Э<1. Причем, чем ближе значение h21Э к единице, тем выше качество транзисторов. У высококачественных транзисторов h21Э = 0,95 — 0,99.
Следует отметить, что не весь ток коллектора Iк управляем. Если разорвать цепь эмиттера, то ток коллектора не исчезнет, а только значительно уменьшится и к тому же изменит направление. Такой ток называется обратным током коллектора IKБО. Он почти не зависит от напряжения на коллекторном переходе UKБ, но зависит от температуры перехода. Чем меньше обратный ток коллектора IKБO, тем выше качество транзистора.
Если включить транзистор по схеме 03 (рис. 1,6), то его коэффициент передачи тока равен приращению выходного тока коллектора ДIк к вызвавшему его приращению тока базы ДIБ. Следовательно ДIк/ДIБ=h21э что составляет девятки и даже сотни единиц.
Значительно увеличивается (до сотен и тысяч ом) при включении транзистора по схеме ОЭ и входное сопротивление каскада, поскольку теперь входным является незначительный ток базы. Большое входное сопротивление удобно для согласования транзистора с предыдущим каскадом, так как в этом случае транзистор меньше шунтирует его. Поэтому включение транзистора по схеме ОЭ — это основная схема использования транзистора в усилительных каскадах. Схема включения ОБ применяется чаще всего в каскадах с двумя транзисторами.
При включении транзистора по схеме (Ж (рис. 1,в) входным является ток базы, поэтому транзистор имеет достаточно большое входное сопротивление.
Выходное сопротивление такого каскада мало, так как нагрузка включена в эмиттерную цепь, а переход включен в прямом направлении. Такая схема включения называется эмиттерным повторителем. Достоинство его состоит в том, что ток в эмиттерной нагрузке по фазе и полярности совпадает с входным током базы. В отношении же коэффициента передачи тока схема ОК. не уступает схеме ОЭ: ДIЭ/ДIБ=1+h21Э.
Статический коэффициент передачи тока h21Э характеризует работу транзистора на постоянном токе. При работе транзистора в режиме усиления переменных электрических сигналов его усилительная способность в схеме ОЭ оценивается коэффициентом h21э, который тоже представляет собой отношение изменения выходного тока к вызвавшему его изменению входного тока и называется коэффициентом передачи тока; в режиме малого сигнала.
Коэффициенты передачи тока зависят от токов и напряжений на электродах транзисторов. Обычно коэффициент передачи тока достигает максимума при некотором среднем токе эмиттера; именно это значение тока указывают в справочниках как рекомендуемое для измерения коэффициента передачи тока. Зависимость коэффициента передачи тока от коллекторного напряжения становится заметной только при очень малых или очень больших коллекторных напряжениях, но в таких режимах транзисторы не используются, особенно при максимальных коллекторных напряжениях, так как велика опасность пробоя перехода.