Временные диаграммы для схемы
К концу прямого хода строчной развертки в дросселе L2 накапливается энергия UL2=l/2(L2I2).
В момент t3 транзистор VT2 запирается и происходит формирование обратного хода строчной развертки. Запасенная энергия в дросселе L2 во время обратного хода строчной развертки передается в конденсатор С13 (рис. 32,а). Таким образом происходит компенсация потерь в строчном контуре.
Ток в накопительном дросселе L2 можно вычислить по формуле IL2 = EaT/L2, где Еп — выпрямленное напряжение сети; L2 — индуктивность накопительного дросселя; Т — время проводящего состояния VT2.
Изменяя момент отпирания транзистора (tа на рис. 32,г), можно регулировать энергию, запасенную в дросселе L2, а следовательно, и энергию, передаваемую во время обратного хода в контур строчной развертки. Таким образом осуществляется стабилизация тока в отклоняющих катушках.
Импульсное напряжение на коллекторе транзистора (рис. 32,д) равно сумме питающего напряжения и напряжения обратного хода строчной развертки. В реальной схеме оно достигает 1250 В. Поэтому к транзистору VT2 предъявляют высокие требования по максимально допустимому коллекторному напряжению. Ток коллектора транзистора VT2 складывается из тока накопительного дросселя и тока отклонения во второй половине прямого хода (рис. 32,г).
Для управления выходным каскадом строчной развертки может быть использована схема ШИМ, показанная на рис 20. Выход схемы управления подключен к базе транзистора VT1 (см. рис. 31), образующего с трансформатором Т2 предвыходной каскад, управляющий транзистором VT2. Напряжение ОС получают выпрямлением импульса обратного хода с обмотки Wa-i строчного трансформатора ТЗ с помощью диода VD16 и конденсатора СП.
Емкость конденсатора С17 выбирают из условия получения минимальных искажений растра с частотой пульсаций 100 Гц. Неплохие результаты дае? выпрямление импульсов обратного хода, действующих на вторичной обмотке накопительного дросселя L2. Трансформатор Т1 служит для начального запуска задающего ГСР, схемы управления с ШИМ и предвыходного каскада.
Питание в первый момент времени после включения в сеть подается через устройство пуска, которое после появления напряжений на выходе строчного трансформатора отключается. Строчный трансформатор ТЗ служит также для получения вторичных напряжений, необходимых для питания всех каскадов телевизора. Питание вторичных цепей (до 5 — 10 Вт) можно также получить о помощью обмотки накопительного дросселя.
Блок строчной развертки с самостабилизацией был испытан в цветном телевизоре с кинескопом 32ЛК2Ц и показал хорошие результаты. Потребляемая мощность телевизора составила 40 Вт при нулевом токе лучей кинескопа (темный экран). Потребление мощности различными узлами телевизора составляет 25,5 Вт и распределяется следующим образом: видеоусилители (цепь -f-200 В) — 4 Вт, низковольтные цепи обработки сигнала ( + 15 В) — 7,5 Вт, кадровая развертка и предвыходной каскад строчной развертки (4-24 В) — 6 Вт, накал кинескопа — 6 Вт, сетевой выпрямитель со схемой помехоподав-ления — 2 Вт.
Диапазон стабилизации от изменения питающих напряжений 220В±Ю%. В качестве пускового трансформатора Т1 может быть использован любой трансформатор мощностью 4 — 5 Вт. Трансформатор Т2 выполнен на магнито-проводе Ш5Х5 из феррита 2000 НМ1; первичная обмотка его содержит 310 витков провода ПЭВ-20, 31, вторичная обмотка — 46 витков провода ПЭВ-20,59.
Трансформатор ТЗ выполнен на магнитопроводе ПК 20X16 из феррита 3000 НМС. Намоточные данные его обмоток: 1, 2 — 123 витка ПЭВ-2 0,4Ц 9, 7 — 7 витков ПЭВ-2 0,41; 6, 7 — 123 витка ПЭВ-2 0,4,1; 5, 7 ( + 200 В) — 28 витков ПЭВ-2 0,27; 10, 7 (+15 В) — 13 витков ПЭВ-2 0,41. Обмотка высокого напряжения — 864 витка ПЭВ-2 0,08.
СТАБИЛИЗИРОВАННЫЙ ИИЗ
НА ИНТЕГРАЛЬНОЙ МИКРОСХЕМЕ B260D
На рис. 33 изображена схема ИИЭ с выходной мощностью до 70 Вт, которая может быть использована в электрофонах, маломощных стереофонических усилителях, цветных телевизорах. Выходной каскад преобразователя выполнен по однотактной схеме с «обратным» включением выпрямителей.
Предвыход ной усилитель собран по бестрансформаторной схеме на трех транзисторах VT1 — VT3. С вывода 13 ИМС снимается отрицательный импуушс, длительность которого пропорциональна напряжению ОС, поступающему на вывод 3 ИМС, Импульс положительной полярности, снимаемый с коллектора парафазного усилителя VT1, открывает транзистор VT2, при этом открывается также и выходной каскад VT5. В цепь базы VT5 включена фокусирующая цепочка R19C10. Эта цепочка обеспечивает почти трехкратное увеличение тока базы в первый момент после включения транзистора VT5, что ускоряет процесс установления UкЭ вас и снижает потери мощности на коллекторе. После запирания транзистора VT5 дальнейший разряд СЮ происходит лишь через резистор R19, сопротивление которого выбирают таким образом, чтобы к моменту очередного включения VT5 отрицательное напряжение на его базе было не менее 0,5 В. Диод VD6 служит для быстрого и надежного запирания VT2 (сум-ма напряжений отсечки эмиттерного перехода транзистора VT2 и диода VD6t равная приблизительно 1,2 В, заведомо больше, чем сумма Uкэ нао транзистора VT1 и иъэ мае транзистора VT3).
В данном ИИЭ широко используют различные свойства ИМС B260D. В частности, цепочка резисторов Rl, R6, подключенная к выводу 6, определяет максимальную длительность импульса, которая в данной схеме ограничена значением 6<0,45. Конденсатор С4 обеспечивает замедленное нарастание длительности импульса. Цепочка R8, С5 задает частоту работы преобразователя, равную 25 кГц. Токовая защита обеспечивается подачей на вывод 11 напряжения, пропорционального сумме токов базы и коллектора транзистора VT5. Конденсатор С9 фильтрует высокочастотные составляющие этого напряжения, обусловленные переходными процессами. Уровень срабатывания защиты соответствует импульсу тока с амплитудой примерно 4 А. Имеется также защита от перенапряжения, обеспечиваемая делителем напряжения Rll, R12, посредством которого часть напряжения с одного из выходов преобразователя подается на вывод 13 ИМС.
Рис. 33. Принципиальная схема ИИЭ на микросхеме B260D
Стабилизация достигается подачей на вывод 3 ИМС напряжения ОС через делитель R2, R4, R9 с выхода преобразователя, питающего схему управления. Точность стабилизации при изменении нагрузки на 50% и напряжения сети в пределах ±10% составляет около 4%, что является достаточным для упомянутых применений в бытовой аппаратуре.
Для первоначального запуска преобразователя используется транзистор VT4. При включении в сеть, если конденсатор С7 разряжен, нарастание напряжения на нем вызывает ток через конденсатор CS. Пока последний заряжается, транзистор VT4 насыщен и через резистор R18 на шину питания схемы управления и предвыходного каскада поступает постоянное напряжение с сетевого выпрямителя. При этом преобразователь включается, а по мере полного заряда конденсатора С8 транзистор VT4 запирается и ток через резистор R18 прекращается. Транзистор VT4 остается отпертым в течение 0,5 — 1 с после включения, чем обеспечивается надежный запуск преобразователя с «замедленным стартом». Главное преимущество такого устройства запуска — малые габаритные размеры (транзистор VT4 не требует теплоотвода, мощность резистора R18 не более 2 Вт, конденсатор С8 имеет емкость 4,7 — 5 кмФ). Недостаток — необходимость предварительного разряда конденсатора С7 после срабатывания защиты для повторного запуска. Этот недостаток устраняется тем же способом, который применен в телевизоре «Ю,ноеть-Ц404». Данные силового трансформатора Т2: магнитопровод Ш12Х15 из феррита 3000 НМС1, с зазором 0,5 мм в среднем керне; обмотка wl содержит 2X70 витков. ПЭВ-2 0,51, наматывается в виде двух секций — внутренней и внешней. Остальные обмотки заключены между секциями обмотки wl: w2 содержит 20 витков ПЭВ-2 0,31; w3-w4 — 26 витков ПЭВ-2 0,64.
ЗАКЛЮЧЕНИЕ.
ПЕРСПЕКТИВЫ РАЗВИТИЯ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ЭЛЕКТРОПИТАНИЯ ДЛЯ БЫТОВОЙ РЭА
Процесс внедрения ИИЭ в массовую бытовую РЭА находится еще на начальной стадии своего развития.
Серийные ИИЭ, вы пускаемые промышленностью, используются пока только в телевизионных приемниках. Еще не созданы надежные мощные ИИЭ для высококачественной стереофонической аппаратуры. Не сделано попыток применить маломощные ИИЭ для массовой малогабаритной аппаратуры — радиоприемников, кассетных магнитофонов, которые даже в домашних условиях эксплуатируются от автономного источника — электрических батареек, что приводит к непрекращающемуся дефициту последних. Предстоит еще решать многие проблемы электромагнитной совместимости аппаратуры.
Устройства электропитания, преобразующие переменное напряжение 220 В в более низковольтное с помощью сетевых трансформаторов, уже не могут удовлетворять нарастающим требованиям улучшения массогабаритных и энергетических показателей, так как их потенциальные возможности практически исчерпаны. На смену традиционным преобразователям электроэнергии, поступающей из сети, приходят новые, удачно названные Ю. И. Коневым [9] микроэлектронными электротехническими системами.
В соответствии с потребностями микроэлектронных электросистем создается новая элементная база. Главным ее звеном является высоковольтный силовой ключ. В настоящее время — это биполярный транзистор, изготавливаемый как меза-, так и эпи-таксиально-планарным методами.
Последний метод является весьма перспективным, так как он открывает возможности использования бескорпусных кристаллов высоковольтных транзисторов в силовых микросборках. Методами планарной технологии по краям кристаллов создаются глубокие охранные диффузионные кольца я-типа [6]. В упрощенном понимании данные кольца изолируют базу транзистора от края кристалла. В разрезанном кристалле без охранного кольца граница коллекторного р — «-перехода выходит на боковую грань кристалла, которая ничем не защищена, что и является главной причиной пробоя. Поэтому при отсутствии охранного кольца приходится дополнительно обтравливать периферию кристалла, создавая меза-планарную структуру.
Затем обтравленная наклонная поверхность дополнительно пассивируется.
Наличие охранного кольца устраняет необходимость этих операций, поэтому после проверки параметров на пластине и резки кристаллы могут поступать непосредственно на монтаж в- микросборке. Таким образом, новая перспективная технология изготовления высоковольтных транзисторов создает предпосылки экономически эффективной микроминиатюризации силовых элементов ИИЭ.
Альтернативой высоковольтных биполярных транзисторов являются запираемые тиристоры и высоковольтные МДП-ключи. [10, 16].
Рис. 34. Структура мощного высоковольтного МДП-ключа с верти-кальным каналом по технологии SIMPOS (стрелками обозначен электронный ток канала)
К созданию запираемых тиристоров привело тщательное изучение физических процессов в сильноточных р — n-структурах, где понижение электрической проводимости высокоомных слоев достигается образованием в них электронно-дырочной плазмы. Так же, как и в высоковольтных транзисторах, при включении запираемых тиристоров происходит разрушение плазмы путем замедленного «вытягивания» дырок из высокоомного я-слоя анодного р — n-перехода тиристора. В это время анодный ток тиристора стягивается в узкий шнур в центральной области и затем быстро прекращается. Недостатком запираемых тиристоров является то, что значения запирающего тока управляющего электрода и выключаемого анодного тока имеют один порядок. Это усложняет цепи управления тиристором и принципиальным образом ограничивает быстродействие таких ключей.
Более простое решение предоставляют высоковольтные МДП-ключи, в разработках которых лидирующее место занимает в настоящее время западногерманская фирма Сименс [16]. Ключ, предложенный этой фирмой, содержит на кристалле размерами 4X4 мм более 3000 индивидуальных МДП-транзисторов с индуцированным вертикальным n-каналом, включенных параллельно. Упрощенное изображение его структуры приведено на рис. 34.
Подложка n--типа представляет собой трехслойную эпитаксиаль-ную структуру, с тыльной стороны которой выращены эпитак-сиальные слои n+- и р+-типа. Основную толщину, однако, составляет высокоомный n--слой, благодаря которому обеспечивается высокое пробивное напряжение структуры (до 1000 В). Общий R+-слой является стоком для всех транзисторов. В n--слое методом ионной имплантации создаются достаточно глубокие p+-области, которые выполняют роль изолирующего барьера между n+-истоками и n--подложкой, в которой возникает канал. Истоки я+-типа также формируются путем ионной имплантации в барьерных р+-областях.
Подложка с имплантированными участками сначала окисляется, а затем покрывается слоем поликремния n+-типа, который образует общий затвор. В нем вытравливают окна для последующего формирования выводов от n+-истоков, а также для попарного разделения затворных областей структур, включаемых параллельно.
Поликремниевый слой покрывается слоем SiO2, в котором также вытравливают окна для металлизации истока. Затем всю структуру покрывают алюминием, образующим контакт истока, к которому приваривают вывод. В одном из углов кристалла имеется вскрытое окно, обнажающее слой поликремниевого затвора,. Этот участок затвора металлизируют и приваривают к нему вывод.
Структура работает следующим образом. Когда к затвору приложен положительный потенциал, в тонком участке барьерного р+ -слоя между n+ -истоком и n--подложкой индуцируется n-канал„ По этому каналу начинает протекать электронный ток в направлении стока, к которому приложено положительное напряжение. Избыток электронов в л~-области компенсируется дырочной ин-жекцией из р+ — n+-перехода в зоне стока. В результате сопротивление л~-области понижается.
В этой структуре достигается гораздо более равномерное распределение тока по площади кристалла, чем в транзисторе. Действительно, структура содержит более 3000 ячеек, по которым протекает ток, а для транзисторной структуры число таких ячеек не превышает 200.
За число элементарных ячеек в транзисторе мож но принять квадрат числа пар эмиттерно-базовых «гребенок», которое для мощных транзисторов не превышает 10 — 12. Увеличению числа «гребенок» препятствует рост сопротивления металлизации эмиттера и базы.
Так как ток каждой ячейки при суммарном токе стока, например 5 А не превышает 2 мА, то процессы его переключения происходят гораздо быстрее, имея в виду, что площадь пассивных (плохо управляемых) участков кристалла гораздо меньше, чем в транзисторе.
Общим для транзисторной и МДП-высоковольтной структуры-остается наличие достаточно толстого высокоомного n--слоя с модулируемой проводимостью, а также наличие охранных колец по периферии, предотвращающих пробой по боковой поверхности. Таким образом, мощные МДП-ключи явились результатом развития современной технологии БИС: прецизионной фотолитографии, ионной имплантации. Большое значение имеет также высокое качество исходного кремния.
Главные преимущества МДП-ключей — более простое управление, которое может быть реализовано с помощью КМДП-микро-схем, повышенная устойчивость ко вторичному пробою из-за снижения вероятности локального перегрева кристалла, повышенная (до 50 — 100 кГц) частота переключения.
Ключи МДП повлекут за собой дальнейшее повышение требований к выпрямительным диодам, фильтрующим конденсаторам, материалам для магнитопроводов. Однако главные принципы построения ИИЭ в основном сохранятся.
Повышение частоты работы преобразователей ИИЭ, а так-же появление планарных силовых ключей открывают широкие возможности для микроминиатюризации. В микросборках для ИИЭ бытовой РЭА перспективно использование недорогих алюминиевых оксидированных подложек с наклееным металлизированным полиимидным пленочным диэлектриком, на котором методами трафаретной печати наносят резисторы, изготовленные из низкотемпературных полимерных паст, и вытравливают проводники. Такие подложки выдерживают пробивное напряжение свыше 2 кВ и обладают хорошими теплоотводящими свойствами.Экспериментальные образцы микросборок, собранные по схеме двухтактного полумостового преобразователя (см. рис. 29) с вынесенным за пределы микросборки трансформатором продемонстрировали возможность их использования в стереофонических усилителях мощностью 2X50 Вт. Эти же микросборки были использованы в образцах маломощных ИИЭ с РВЫХ = 1 — 3 Вт (трансформатор на магнитопроводе Ш5Х5) для питания переносной аппаратуры в стационарных условиях. По сравнению с выпускаемыми трансформаторами источниками питания маломощные ИИЭ имеют вдвое меньше объем и массу. Маломощные силовые микросборки с планарными транзисторами особенно хорошо должны сочетаться с пьезоэлектрическими трансформаторами [12].